
1

Sub-Zero: Zero-copy IO for Persistent Main Memory 
File Systems

Juno Kim, Yun Joon Soh, Joe Izraelevitz*, Jishen Zhao, Steven Swanson

UC San Diego, University of Colorado, Boulder*

Non-Volatile Systems Laboratory
Department of Computer Science & Engineering

University of California, San Diego



2

Copy-based conventional file IO interface

• read(), write() system calls rely on 
copy-based semantics
– User provides the buffer address
– Data is copied between the buffer 

and the storage media via page cache

• The first movement “memcpy” is 
not significant when storage is slow

file

Page cache
DRAM

Block 
device

buf

block IO

negligiblememcpy

dominant



3

What if storage is fast enough?

• Persistent memory (PMEM): new storage with near-DRAM speed
– Orders of magnitude faster than disks/SSDs
– Only 2~3x slower than DRAM

• PM allows direct access (DAX)
– File systems bypass the page cache

• DAX file systems
– Ext4, XFS in DAX mode (Linux)
– NOVA (UCSD), Strata, SplitFS (UT Austin)
– And more

Technology
Latency

Read Write

DRAM 0.1 μs 0.1 μs

Persistent Memory 0.3 μs 0.1 μs

NVMe SSD 120 μs 30 μs

SATA SSD 80 μs 85 μs

HDD 10 ms 10ms



4

Conventional file IO on PMEM

• Page cache is bypassed by DAX 
à Direct memory copying between 
user buffer and PM

• The last movement is enforced 
by the read(), write() interface

DRAM

buffer

memcpy

file

PMEM



5

Copying dominates as access size grows

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

4KB
16KB

64KB
256KB

1MB
4MB

16MB
64MB

256MB
1GB

Ra
tio

Access size

memcpy ratio in read()

memcpy others

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

4KB
16KB

64KB
256KB

1MB
4MB

16MB
64MB

256MB
1GB

Ra
tio

Access size

memcpy ratio in write()

memcpy others

* Measured on NOVA file system[1]

[1] NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main Memories, Jian Xu, Steven Swanson, FAST’16



6

• Kyoto Cabinet: high-performance key-value library

• Memcpy in write() takes 20~45% of SET operation

Copying overhead in real application

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

Ex
ec

ut
io

n 
ti

m
e 

(%
)

Value size

memcpy others



7

How can we remove this memcpy?

• New IO interface is necessary
– Copying is the property of read(), write() 

semantics
– New interface must allow direct access to 

remove copying

• Isn’t mmap() enough for this purpose?

DRAM

buffer

memcpy

file

PMEM



8

mmap() complicates programming

• Lack of atomicity
– Atomic unit of update is only 8-byte by processor
– Failure-recovery can yield inconsistent states

• Lack of concurrency control
– Concurrent access might observe partial data

Programmers must implement necessary mechanisms on their own.



9

Sub-Zero IO

• New system calls that access PMEM files without copy-based 
semantics
– Sub-Zero preserves the ease of use that read(), write() provide
– Sub-Zero provides high-performance similar to mmap()

• Two key primitives: peek(), patch()



10

Rest of the talk

• Sub-Zero IO overview
– Peek()
– Patch()

• Implementation
• Performance evaluation
• Conclusion



11

• Returns a pointer to a PMEM region
– The pointer is equivalent to a snapshot of the 

file contents
– The pointer is immutable

• Allows easier programming than mmap(), 
because
– Peek() works at any arbitrary offset
– Peek() captures a private snapshot atomically

• Unpeek() closes the mapping opened by 
peek()

peek() system call

PMEM file

Peeked

• Read-only
• Isolated from other file modifications



12

peek() example 1: basic

// peek the first 4KB of a PMEM file

int fd = open("foo", O_RDONLY); // Open the target file

char *buf = peek(fd, 0, 4096); // Peek its contents

printf(“%s\n”, buf); // Print the contents

unpeek(buf); // Unpeek the contents



13

peek() example 2: immutability

// peek the first 4KB of a PMEM file

int fd = open("foo", O_RDONLY); // Open the target file

char *buf = peek(fd, 0, 4096); // Peek its contents

printf(“%s\n”, buf); // Print the contents

*buf = ‘a’; // Segmentation fault!

unpeek(buf); // Unpeek the contents



14

peek() example 3: isolation

// Thread 1: peek the first 4KB of a PMEM file

int fd = open("foo", O_RDONLY);

char *buf = peek(fd, 0, 4096);

...

...

printf(“%s\n”, buf); // print original contents!

...

unpeek(buf);

close(fd);

// Thread 2: update the peek()’ed region

// of the same file

int fd = open("foo", O_WRONLY);

char *buf = malloc(4096);

memset(buf, 0xab, 4096); 

write(fd, buf, 4096); // copy-on-write to

... // a new 4KB

free(buf)

close(fd); 



15

patch() system call

• Modifies a file by merging the 
contents of a buffer into the file
– The buffer becomes parts of the file
– The buffer is immutable after patch()

• The buffer must be in PMEM

PMEM PMEM

Target file Buffer file

PMEM PMEM

Target file Buffer file

before patch()

after patch()

inode

data

• Read-only
• Isolated from other file modifications



16

patch() example 1: basic

// Update the first 4KB of a PMEM file

int fd = open(”/mnt/foo", O_RDONLY); // Open the target file

int pool_id = create_pmem_pool(“/mnt”, 1073741284); // Create a pool

void *buf = alloc_pmem(pool_id, 0, 4096); // Allocate a PMEM buffer

memset(buf, ‘\0’, 4096); // Populate new data in the buffer

patch(fd, buf, 4096, 0); // Patch it into the file

free_pmem(buf); // Unmap the buffer



17

patch() example 2: immutability

// Update the first 4KB of a PMEM file

int fd = open("foo", O_RDONLY); // Open the target file

int pool_id = create_pmem_pool(“/mnt”, 1073741284); // Create a pool

void *buf = alloc_pmem(pool_id, 0, 4096); // Allocate a PMEM buffer

memset(buf, ‘\0’, 4096); // Populate new data in the buffer

patch(fd, buf, 4096, 0); // Patch it into the file

*(char*)buf = ‘a’; // Segmentation fault!

free_pmem(buf); // Unmap the buffer



18

Implementation

• Implemented Sub-Zero IO in NOVA and XFS-DAX
– Under Linux kernel 4.19

• SubZero can be implemented without invasive changes if the file system
– Allows multiple files to share data pages
– Supports COW data update when a write updates shared pages

• Both file systems support these features
– NOVA supports COW for strong data consistency
– XFS-DAX supports page sharing/COW for “reflink”



19

Performance Evaluation

• Micro-benchmark
– Basic performance compared to read(), write(), and mmap()
– Latency includes the time to allocate/populate/free the buffer

• Application
– Apache Web Server: widely-deployed web server
– Kyoto Cabinet: high-performance key-value store library

• Measured on Intel’s Optane DC Persistent Memory



20

Performance of peek()

0

0.2

0.4

0.6

0.8

1

1.2

4KB 16KB 64KB 1MB

N
or

m
al

iz
ed

 la
te

nc
y

Access size

NOVA

read read-opt mmap peek

0

0.2

0.4

0.6

0.8

1

1.2

4KB 16KB 64KB 1MB

N
or

m
al

iz
ed

 la
te

nc
y

Access size

XFS-DAX

read read-opt mmap peek

• peek() performs up to 2x faster than read() depending on the reuse of buffer

• peek() performs almost similar to mmap()



21

Performance of patch()

0

0.2

0.4

0.6

0.8

1

1.2

4KB 16KB 64KB 1MB

N
or

m
al

iz
ed

 la
te

nc
y

Access size

NOVA

write write-opt mmap patch-a

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4KB 16KB 64KB 1MB

N
or

m
al

iz
ed

 la
te

nc
y

Access size

XFS-DAX

write write-opt mmap patch-a

• patch() outperforms write() as the access size grows

• The speedup is up to 2.8x and 2.2x in NOVA and XFS-DAX, respectively
• patch() is slower than mmap() under 64kB, but becomes faster beyond 64kB



22

Application performance

0

0.5

1

1.5

2

2.5

3

3.5

4

4K 64K 1M 4M 64M

Sp
ee

du
p

File size

Apache Web Server HTTP GET

read peek

0

0.2

0.4

0.6

0.8

1

1.2

1.4

32KB 64KB 128KB 512KB 4MB

Sp
ee

du
p

Value size

Kyoto Cabinet SET

write patch

• Apache Web Server: HTTP GET with peek() à 3.6x
• Kyoto Cabinet: SET with patch() à 1.3x



23

Conclusion

• New IO system calls that offer high performance on PMEM file systems
– Simple API: peek(), patch()
– Low overhead: no data copying

• Easier programming than mmap()
– Provides atomicity, isolation in kernel

• Require minimal changes to applications


