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Copy-based conventional file IO interface

• read(), write() system calls rely on 
copy-based semantics
– User provides the buffer address
– Data is copied between the buffer 

and the storage media via page cache

• The first movement “memcpy” is 
not significant when storage is slow
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What if storage is fast enough?

• Persistent memory (PMEM): new storage with near-DRAM speed
– Orders of magnitude faster than disks/SSDs
– Only 2~3x slower than DRAM

• PM allows direct access (DAX)
– File systems bypass the page cache

• DAX file systems
– Ext4, XFS in DAX mode (Linux)
– NOVA (UCSD), Strata, SplitFS (UT Austin)
– And more

Technology
Latency

Read Write

DRAM 0.1 μs 0.1 μs

Persistent Memory 0.3 μs 0.1 μs

NVMe SSD 120 μs 30 μs

SATA SSD 80 μs 85 μs

HDD 10 ms 10ms
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Conventional file IO on PMEM

• Page cache is bypassed by DAX 
à Direct memory copying between 
user buffer and PM

• The last movement is enforced 
by the read(), write() interface
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Copying dominates as access size grows
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* Measured on NOVA file system[1]

[1] NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main Memories, Jian Xu, Steven Swanson, FAST’16
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• Kyoto Cabinet: high-performance key-value library

• Memcpy in write() takes 20~45% of SET operation

Copying overhead in real application

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

Ex
ec

ut
io

n 
ti

m
e 

(%
)

Value size

memcpy others



7

How can we remove this memcpy?

• New IO interface is necessary
– Copying is the property of read(), write() 

semantics
– New interface must allow direct access to 

remove copying

• Isn’t mmap() enough for this purpose?
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mmap() complicates programming

• Lack of atomicity
– Atomic unit of update is only 8-byte by processor
– Failure-recovery can yield inconsistent states

• Lack of concurrency control
– Concurrent access might observe partial data

Programmers must implement necessary mechanisms on their own.
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Sub-Zero IO

• New system calls that access PMEM files without copy-based 
semantics
– Sub-Zero preserves the ease of use that read(), write() provide
– Sub-Zero provides high-performance similar to mmap()

• Two key primitives: peek(), patch()
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Rest of the talk

• Sub-Zero IO overview
– Peek()
– Patch()

• Implementation
• Performance evaluation
• Conclusion
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• Returns a pointer to a PMEM region
– The pointer is equivalent to a snapshot of the 

file contents
– The pointer is immutable

• Allows easier programming than mmap(), 
because
– Peek() works at any arbitrary offset
– Peek() captures a private snapshot atomically

• Unpeek() closes the mapping opened by 
peek()

peek() system call

PMEM file

Peeked

• Read-only
• Isolated from other file modifications
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peek() example 1: basic

// peek the first 4KB of a PMEM file

int fd = open("foo", O_RDONLY); // Open the target file

char *buf = peek(fd, 0, 4096); // Peek its contents

printf(“%s\n”, buf); // Print the contents

unpeek(buf); // Unpeek the contents
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peek() example 2: immutability

// peek the first 4KB of a PMEM file

int fd = open("foo", O_RDONLY); // Open the target file

char *buf = peek(fd, 0, 4096); // Peek its contents

printf(“%s\n”, buf); // Print the contents

*buf = ‘a’; // Segmentation fault!

unpeek(buf); // Unpeek the contents
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peek() example 3: isolation

// Thread 1: peek the first 4KB of a PMEM file

int fd = open("foo", O_RDONLY);

char *buf = peek(fd, 0, 4096);

...

...

printf(“%s\n”, buf); // print original contents!

...

unpeek(buf);

close(fd);

// Thread 2: update the peek()’ed region

// of the same file

int fd = open("foo", O_WRONLY);

char *buf = malloc(4096);

memset(buf, 0xab, 4096); 

write(fd, buf, 4096); // copy-on-write to

... // a new 4KB

free(buf)

close(fd); 
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patch() system call

• Modifies a file by merging the 
contents of a buffer into the file
– The buffer becomes parts of the file
– The buffer is immutable after patch()

• The buffer must be in PMEM

PMEM PMEM

Target file Buffer file

PMEM PMEM

Target file Buffer file

before patch()

after patch()

inode

data

• Read-only
• Isolated from other file modifications
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patch() example 1: basic

// Update the first 4KB of a PMEM file

int fd = open(”/mnt/foo", O_RDONLY); // Open the target file

int pool_id = create_pmem_pool(“/mnt”, 1073741284); // Create a pool

void *buf = alloc_pmem(pool_id, 0, 4096); // Allocate a PMEM buffer

memset(buf, ‘\0’, 4096); // Populate new data in the buffer

patch(fd, buf, 4096, 0); // Patch it into the file

free_pmem(buf); // Unmap the buffer
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patch() example 2: immutability

// Update the first 4KB of a PMEM file

int fd = open("foo", O_RDONLY); // Open the target file

int pool_id = create_pmem_pool(“/mnt”, 1073741284); // Create a pool

void *buf = alloc_pmem(pool_id, 0, 4096); // Allocate a PMEM buffer

memset(buf, ‘\0’, 4096); // Populate new data in the buffer

patch(fd, buf, 4096, 0); // Patch it into the file

*(char*)buf = ‘a’; // Segmentation fault!

free_pmem(buf); // Unmap the buffer
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Implementation

• Implemented Sub-Zero IO in NOVA and XFS-DAX
– Under Linux kernel 4.19

• SubZero can be implemented without invasive changes if the file system
– Allows multiple files to share data pages
– Supports COW data update when a write updates shared pages

• Both file systems support these features
– NOVA supports COW for strong data consistency
– XFS-DAX supports page sharing/COW for “reflink”
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Performance Evaluation

• Micro-benchmark
– Basic performance compared to read(), write(), and mmap()
– Latency includes the time to allocate/populate/free the buffer

• Application
– Apache Web Server: widely-deployed web server
– Kyoto Cabinet: high-performance key-value store library

• Measured on Intel’s Optane DC Persistent Memory
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Performance of peek()
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• peek() performs up to 2x faster than read() depending on the reuse of buffer

• peek() performs almost similar to mmap()
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Performance of patch()
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• patch() outperforms write() as the access size grows

• The speedup is up to 2.8x and 2.2x in NOVA and XFS-DAX, respectively
• patch() is slower than mmap() under 64kB, but becomes faster beyond 64kB
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Application performance
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• Apache Web Server: HTTP GET with peek() à 3.6x
• Kyoto Cabinet: SET with patch() à 1.3x
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Conclusion

• New IO system calls that offer high performance on PMEM file systems
– Simple API: peek(), patch()
– Low overhead: no data copying

• Easier programming than mmap()
– Provides atomicity, isolation in kernel

• Require minimal changes to applications


