
1

Finding and Fixing Performance Pathologies
in Persistent Memory Software Stacks

Jian Xu*, Juno Kim*, Amirsaman Memaripour, Steven Swanson
UC San Diego

* denotes equal contribution

2

Persistent Memory

• New tier of memory
– Low latency persistence (than SSD,HDD)
– Large capacity (than DRAM)

• Intel Optane DC Persistent Memory
– First scalable persistent memory
– Re-evaluated some of our results on this

device

Battery-backed NVDIMM

Our paper

This talk

3

Where are we now?

Redis

Legacy file systems

- XFS-DAX

- Ext4-DAX

SQLite RocksDB SAP HANA

MySQL LMDBCassandra

Custom file systems

- BPFS [SOSP’09]

- PMFS [Eurosys’14]

- NOVA [FAST’16]

- Strata [SOSP’17]
Persistent memory

Application

PM-aware

file system

and more!

4

Let’s see the whole picture

• Let’s fix the old codes
– Legacy codes built for disk run slow on PM

• Let’s study the new trade-offs
– What are the best ways to optimize software systems on PM?
– What are the trade-offs? Complexity vs. Performance?

• Our goal: fix urgent problems and provide best practices for optimization.

5

Key questions

Persistent memory

Application

PM-aware
file system

Which optimizations offer
the best complexity/performance trade-offs?

Are custom file systems worth it?

What bottlenecks remain?

6

Contributions

Persistent memory

Application

PM-aware
file system

Which optimizations offer
the best complexity/performance trade-offs?

Are custom file systems worth it?

What bottlenecks remain?

Analyze a range of optimization techniques

Show why custom file system is valuable

Improve scalability for PM file systems

7

Candidate techniques for optimizing apps

Easy Hard

Persistent Memory

PM-aware file system

App

POSIX APIUser space

Kernel space

PM data structure

App

DAX

File IO emulation

App

DAX

programming cost

Use PM file system Build PM data structureEmulate POSIX IO in userspace

VaryLittle to none

8

FLEX : FiLe Emulation with DAX

• Emulate POSIX IO in userspace with DAX
– open + mmap a file
– memcpy + clflush/clwb for write
– memcpy for read
– fallocate + mmap for extending file space

• Pros
– Bypass file system overhead (e.g. journaling)
– Amortize PM allocation cost by preallocation

• Cons
– Guarantee only 8-byte atomicity

open

mmap

space? fallocate

memcpy non-
temporal

storeclflush/clwb

or

no

yes

9

FLEX append example

User

Kernel

Application open

mmap

space? fallocate

memcpy non-
temporal

storeclflush/clwb

or

no

yes

allocated PM space

non-persisted data (in cache)

persisted data

memory-mapped region

mmap address
write offset

allocated size

10

Applying FLEX to applications

• RocksDB, SQLite
– Use file to implement Write-Ahead Logging (WAL) for consistency

• Most apps do NOT rely on the parts of POSIX that FLEX sacrifices [1]
– Atomicity
– File descriptor aliasing semantics

• Therefore, no logical change is required
– RocksDB = 56 LOC, SQLite = 233 LOC

[1] Pillai et al, All File Systems Are Not Created Equal: On the Complexity of Crafting Crash-Consistent
Applications, OSDI’14

11

FLEX achieves substantial speedups

SQLite random SET

2 ~ 6x

RocksDB random SET

2 ~ 4x

FLEX achieved 2 ~ 6x speedups over POSIX with simple changes.

FLEX reduces the gap between three file systems

1.7x
3.1x

On Optane DC PM

12

Let’s try a harder one

Persistent Memory

PM-aware file system

App

POSIX APIUser space

Kernel space

PM data structure

App

DAX

File IO emulation

App

DAX

Use PM file system Build PM data structureEmulate file IO in userspace
Easy Hard

programming cost VaryLittle to none

13

PM data structures

• Crash-consistent
– No additional logging is required

• Difficult to build
– Complex operations (e.g. B-tree split/merge, hash table resizing)
– More challenging for concurrent data structures

• Recent progress
– LSM-tree: NoveLSM [ATC’18], SLM-DB [FAST’19]
– Hash-table: Level hashing [OSDI’18], CCEH [Fast’19]
– B-tree: NV-Tree [FAST’15], FP-tree [SIGMOD’16]

14

Persistent skiplist in RocksDB

Locking-based skiplist Concurrent skiplist

20% slower
than FLEX

25% faster
than FLEX

On Optane DC PM

Modified lines: 56 380 Modified lines: 56 380

15

Takeaway

• FLEX is a cost effective option for accelerating applications.
– Some applications can do this easily.

• PM data structures can provide better performance but developers
should carefully weigh the trade-offs.

16

Key questions

Persistent memory

Application

PM-aware
file system

Which optimizations offer
the best complexity/performance trade-offs?

Are custom file systems worth it?

What bottlenecks remain?

Analyze a range of optimization techniques

Show why custom file system is valuable

Improve scalability for PM file systems

17

Why do we need another new file system?

• Legacy file systems already support PM access
– XFS, EXT4 file systems are extended for PM à XFS-DAX, Ext4-DAX

• Can’t we just improve them?
– If we could get good performance out of one of these, we should!

• Let’s try optimizing Ext4-DAX!

18

Fine-grained journaling for Ext4-DAX

• Key overhead: block-based legacy journaling device (JBD2)
– Write amplification: E.g. 4KB data append à 36KB writes to file/journal
– Global journaling area à No concurrency

• Our solution: Journaling DAX Device (JDD)
– Journals individual metadata fields à No write amplification
– Pre-allocates per-CPU journaling area à Good scalability
– Undo logging à Simplified commit mechanism (e.g. no checkpointing)

19

JDD performance

• Compare with Ext4-DAX, NOVA

• Run four benchmarks

– Append 4KB

– Filebench varmail

– SQLite (the same before)

– RocksDB (the same before)

• Result

– Faster than Ext4-DAX by 2.3x

– NOVA is still 1.5x faster.

1.5x gap

20

Can we fill the gap further?

• “Disk first”
– Ext4-DAX shares codebase with disk-oriented Ext4
– Disruptive changes are not likely to happen
– Further optimizations would make Ext4 a less-good disk-based file system.

• We do actually need a custom file system for PM!

21

Key questions

Persistent memory

Application

PM-aware
file system

Which optimizations offer
the best complexity/performance trade-offs?

Are custom file systems worth it?

What bottlenecks remain?

Analyze a range of optimization techniques

Show why custom file system is valuable

Improve scalability for PM file systems

22

Poor scalability by Virtual File System

• Bottleneck: Global inode structure, per-inode locking
• Solution: Per-CPU inode structure, fine-grained locking
• See our paper for details

[1] Min et al, Understanding Manycore Scalability of File Systems, ATC’16

23

Better scalability with NUMA-aware file access

• Enabled NUMA-aware file access in NOVA
– Added simple interface for querying/setting NUMA location per file
– Achieved 1.2 – 2.6x better throughput

• See our paper for details

24

Conclusion

• FLEX is a cost-effective app optimization technique.
• PM data structures can provide better performance but developers

should carefully weigh the trade-offs.
• Custom file system provides better performance and legacy file systems

are unlikely to close the gap.
• Memory-centric optimizations (e.g. NUMA) are now applicable (and

profitable) for file.

Thank you! Questions?

