
Blaze: Fast Graph Processing on Fast SSDs
Juno Kim

Computer Science and Engineering
University of California, San Diego

La Jolla, U.S.
juno@eng.ucsd.edu

Steven Swanson
Computer Science and Engineering
University of California, San Diego

La Jolla, U.S.
swanson@eng.ucsd.edu

Abstract—Out-of-core graph processing is an attrac-
tive solution for processing very large graphs that
do not fit in the memory of a single machine. The
new class of ultra-low-latency SSDs should expand
the impact and utility of out-of-core graph processing
systems. However, current out-of-core systems cannot
fully leverage the high IOPS these devices can deliver.

We introduce Blaze, a new out-of-core graph pro-
cessing system optimized for ultra-low-latency SSDs.
Blaze offers high-performance out-of-core graph ana-
lytics by constantly saturating these fast SSDs with a
new scatter-gather technique called online binning that
allows value propagation among graph vertices without
atomic synchronization. Blaze offers succinct APIs to
allow programmers to write efficient out-of-core graph
algorithms without the burden to manage complex IO
executions. Our evaluation shows that Blaze outper-
forms current out-of-core systems by a wide margin on
seven datasets and a set of representative graph queries
on Intel Optane SSD.

Index Terms—Network theory (graphs), Data analy-
sis, High performance computing, Parallel processing

I. INTRODUCTION

Out-of-core graph processing enables the pro-
cessing of large graphs that do not fit in the
available main memory of a single machine by
judiciously moving data between memory and stor-
age. The design of out-of-core graph processing
systems has evolved for nearly a decade [15], [20],
[11], [29], [27], [16], [12] with a strong focus on
optimizing IO performance to minimize the over-
head of slow storage access. With significant im-
provements in storage technology, the design of
these systems has also been tailored to benefit from
the improved performance of more advanced de-
vices. Well-optimized, out-of-core graph processing
systems have shown that they provide attractive
performance with lower cost and complexity com-
pared to the complex distributed graph processing
solutions that spread the graph in the memories of
multiple machines [10], [13], [17], [25].

The design of out-of-core graph processing sys-
tems now faces new challenges and opportunities
as more performant storage technologies emerge.

For example, modern SSDs like Intel Optane SSD or
Samsung’s Z-NAND offer an order-of-magnitude
higher bandwidth compared to conventional SSDs.
The most critical aspect of these new devices is their
improved bandwidth and their symmetric perfor-
mance between sequential and random IO. We
refer to these modern SSDs as Fast NVMe Drives
(FNDs), the same terminology used by previous
literature [14].

In this work, we present Blaze, an open-source,
out-of-core graph processing system optimized for
FNDs.1 Specifically, Blaze aims to keep the FNDs
constantly saturated to achieve high performance.
For this, Blaze introduces a novel scatter-gather
scheme called online binning that propagates values
among graph vertices without the synchroniza-
tion overhead while achieving good load balance,
the goal previous techniques like synchronization
and message passing cannot achieve simultane-
ously. For balanced IO, Blaze uses page-interleaved
Compressed-Sparse Row (CSR) format which helps
increase IO utilization from multiple SSDs while
minimizing IO amplification. Finally, Blaze allows
the programming of efficient out-of-core graph al-
gorithms under the well-known API, EDGEMAP
and VERTEXMAP, first introduced in Ligra [22]. We
extend them to be efficiently used in out-of-core
graph processing.

We evaluate Blaze against two state-of-the-art,
open-sourced, out-of-core graph processing sys-
tems, FlashGraph [27] and Graphene [16]. These
systems are also designed for random IO unlike
early-generation out-of-core graph processing sys-
tems [15], [20], [29]. Compared to FlashGraph and
Graphene, Blaze offers substantial speedups (up
to 13.6×) in a wide variety of workloads as we
describe in Section V.

Overall, we make the following contributions in
this paper.
• An analysis of two recent out-of-core systems,

FlashGraph [27] and Graphene [16], revealing

1The code is available at https://github.com/NVSL/blaze.

SC22, November 13-18, 2022, Dallas, Texas, USA
978-1-6654-5444-5/22/$31.00 ©2022 IEEE

https://github.com/NVSL/blaze

their performance problems on FNDs
• A novel atomic-free, scatter-gather scheme

called online binning that applies graph algo-
rithms on disk-resident graphs with low CPU
overhead and high load balance

• An extension of EDGEMAP API to the out-of-
core graph processing stack

• An open-sourced implementation of Blaze
This paper is organized as follows. Section II

describes the background and motivation of this
work. Section III discusses the root cause of the
low performance of existing systems on FNDs.
Section IV describes the design and implementation
of Blaze. Section V describes the experimental setup
and results. Section VI discusses related works and
Section VII concludes.

II. BACKGROUND AND MOTIVATION

In this section, we describe the background on
out-of-core graph processing and the performance
characteristics of modern FNDs. Then we further
discuss the performance problems of current out-
of-core graph processing systems when they run
on FNDs, motivating our work.

A. Out-of-core Graph Processing

Out-of-core graph processing enables the pro-
cessing of very large graphs that do not fit in the
main memory of a single machine – by placing
the graph on the secondary storage and conducting
frequent IO to process graph algorithms on storage-
resident graphs. Compared to the distributed graph
processing that places graphs on an aggregated
memory of multiple machines, out-of-core process-
ing offers similar or better performance without
the need to deal with the complexity of distributed
computing [15], [20], [29], [27], [16], [18].
Current systems The design of out-of-core graph
processing systems have evolved in step with ad-
vances in storage performance. For instance, out-
of-core systems designed around the early 2010s
were optimized for sequential disks [15], [20]. To
maximize the IO performance, these systems ac-
cess disk-resident graphs sequentially at the cost
of accessing more data than necessary. Even with
this potential access amplification, they benefit from
sequential access due to the significant performance
gap between sequential and random access on
early-generation disks.

However, more recent systems [27], [16] make
a different tradeoff since storage devices started
offering fast random access with little performance
gap with sequential access. These systems do not
place a high priority on issuing large sequential
IO, achieving lower IO amplification than prior sys-

SSD Model Seq.
4 kB read

Rand.
4 kB read

NAND Intel SSD DC S3520
(2016) 386 MB/s 132 MB/s

Optane Intel Optane SSD DC
P4800X (2017) 2550 MB/s 2360 MB/s

Z-NAND Samsung 983 ZET
(2018) 3400 MB/s 3072 MB/s

V-NAND Samsung 980 Pro
(2020) 3500 MB/s 2827 MB/s

TABLE I: The evolution of storage bandwidth.

tems. Blaze follows the same principle but further
optimizes for FNDs to maximize the benefit of fast
random IO that existing systems fail to leverage.
Processing models Out-of-core graph processing
systems are classified into two models based on
where they keep the vertex data. The first model
is the fully-external model where the vertex data is
kept on storage along with the edges. The second
model is the semi-external model where the vertex
data is kept fully in DRAM.

The choice between two models is determined
by the available memory budget for a machine
and the size of target graphs. Performance-wise,
the systems with the semi-external model often
outperform the ones with fully-external model as
less IO is required for the former.

Blaze adopts the semi-external model for better
performance while minimizing the use of DRAM.

B. Evolution of Storage Performance

Recent advances in storage technology present
new challenges and opportunities for the design
of out-of-core graph processing. The most notable
performance trend in storage device is symmetric
high bandwidth. For instance, Intel Optane SSD [1]
achieves about 2.5 GB/s of read bandwidth for
both sequential and random 4 kB access while Sam-
sung’s Z-NAND [3] and V-NAND SSD [2] show
similar performance characteristics (Table I).

We confirm this by profiling the read bandwidth
of the first two SSDs, NAND SSD and Optane SSD,
shown in Table I. 2 The result confirms the afore-
mentioned performance trend – On NAND SSD,
random 4 kB read performs only 34% of sequential
read bandwidth, showing a large performance gap
between random and sequential access. However,
the gap is only within 10% on Optane SSD. Also,
the absolute bandwidth has undergone a significant
improvement – Optane SSD shows 6.6× and 17.9×
higher bandwidth than NAND SSD in sequential
and random read, respectively. In summary, the

2In this work, we do not focus on the write performance
of SSDs as our target workloads do not incur writes to the
underlying storage.

Dataset Short |V| |E| Distribution Diameter Type
rmat27 r2 134 2147 power 10 synthetic
rmat30 r3 1074 17180 power 11 synthetic
uran27 ur 134 2147 uniform 10 synthetic
twitter tw 61 1468 power 75 real
sk2005 sk 51 1949 power 205 real
friendster fr 124 1806 power 56 real
hyperlink14 hy 1727 64422 power 790 real

TABLE II: Target graphs. The number of vertices
(|V|) and edges (|E|) is in millions. “Short” denotes
short names for datasets.
huge improvement in storage performance opens
new challenges and opportunities in leveraging fast
random IO in out-of-core graph processing.

C. Target Datasets

Table II shows our target datasets throughout
this paper. We chose these input graphs as they
are topologically diverse and different in size. The
rmat27, rmat30, and uran27 graphs are synthetic
while twitter, sk2005, friendster, hyperlink2014 are
from real-world. Six graphs except uran27 follow
a power-law degree distribution while uran27 fol-
lows a normal degree distribution. The uran27 is
the most adversarial graph [5] as it has no locality –
there are no popular vertices (no temporal locality)
and neighbors are not close to each other (no spatial
locality), so it well represents the other extreme in
our choice of input graphs.

D. Issues with Current Out-of-core Systems

Current out-of-core graph systems cannot ef-
ficiently utilize the FND’s bandwidth. Flash-
Graph [27] and Graphene [16], two recent out-of-
core graph processing systems optimized for ran-
dom IO, illustrate this problem – they fail to utilize
the high throughput of FNDs, leading to a subop-
timal performance on representative workloads.

We confirm this by measuring the average IO
bandwidth utilization of both systems on an Intel
Optane SSD with various graph workloads (Fig-
ure 1). We used six graph inputs (r2, r3, ur, tw, sk,
fr) from Table II and ran five queries – Breadth-First
Search (BFS), PageRank (PR), Weakly-Connected
Components (WCC), Sparse Matrix Vector Multi-
plication (SpMV), and Betweenness Centrality (BC).
For all measurements, we used 16 threads for a fair
comparison.

In both FlashGraph and Graphene, IO utilization
significantly varies by input graph and query. Both
systems achieve high IO bandwidth regardless of
the input graph for BFS. However, for PR, WCC,
SpMV – more complex queries than BFS – both
systems show low IO bandwidth depending on
the underlying graph. In the worst case, Flash-
Graph achieves only 23% of the device bandwidth
for PageRank on rmat30 graph while Graphene

r2 r3 u
r

tw sk fr

0

1

2

3

R
ea

d
B

W
(G

B
/

s)

BFS

r2 r3 u
r

tw sk fr

PR

r2 r3 u
r

tw sk fr

WCC

r2 r3 u
r

tw sk fr

SpMV

(a) FlashGraph

r2 r3 u
r

tw sk fr

0

1

2

3

R
ea

d
B

W
(G

B
/

s)

BFS

r2 r3 u
r

tw sk fr

PR

r2 r3 u
r

tw sk fr

WCC

r2 r3 u
r

tw sk fr

SpMV

(b) Graphene

Fig. 1: Underutilized IO in FlashGraph and
Graphene. Red line: the maximum read bandwidth
of Optane SSD.

Systems Skewed
computation Skewed IO Fast IO &

slow computation

FlashGraph [27] Yes No No
Graphene [16] No Yes Yes

Blaze No No No

TABLE III: System comparison. Blaze avoids the
root causes of low IO utilization on FNDs.

achieves 30% of it for PageRank and SpMV on
various graphs.

In the following section, we investigate the root
cause of why FlashGraph and Graphene suffer such
low IO utilization on FNDs.

III. REASONS OF LOW IO UTILIZATION IN
CURRENT SYSTEMS

The root cause of low IO utilization in Flash-
Graph and Graphene on FNDs are skewed compu-
tation, skewed IO, and fast IO, slow computation. We
elaborate on each case in more detail.

A. Skewed Computation

Parallel graph processing requires synchroniza-
tion to avoid data races when updating the
algorithm-specific vertex data concurrently with
multiple threads [19], [22]. However, synchroniza-
tion primitives like compare-and-swap incur
high CPU overhead, which potentially leads to low
IO utilization of FNDs in out-of-core processing.
A well-known alternative that does not require
synchronization for each update is message passing
technique. FlashGraph [27] adopts message passing
by assigning a message queue to each vertex, and
assigning each vertex to one of the computation
threads based on the vertex ID. FlashGraph pro-

Time
0

1

2

3
R

ea
d

B
W

(G
B

/
s)

PR

Time
0

1

2

3

WCC

Time
0

1

2

3

SpMV

(a) FlashGraph on NAND SSD

Time
0

1

2

3

R
ea

d
B

W
(G

B
/

s)

PR

Time
0

1

2

3

WCC

Time
0

1

2

3

SpMV

(b) FlashGraph on Optane SSD

Fig. 2: Idle IO periods in FlashGraph on Optane
SSD. Red line: the maximum read bandwidth of
Optane SSD. Input graph: rmat30.

cesses these messages at the end of each iteration
to update the algorithm-specific vertex data and
generate a set of vertices which will be activated
in the next iteration.

The problem with the message passing scheme
in FlashGraph is the potential risk of skewed compu-
tation on power-law graphs – some threads need to
process more messages than others because certain
vertices have much higher number of neighbors
than other vertices on these graphs. In out-of-core
graph processing, all activities including IO must
wait until the straggler thread finishes the process-
ing of messages in each iteration. Crucially, FND
can potentially finish all IO requests faster than the
straggler thread so it may frequently remain idle
over iterations.

We observe this phenomenon on Optane SSD
as shown in Figure 2. On NAND SSD (Figure 2
(a)), FlashGraph fully utilizes the device’s read
bandwidth on three queries, PR, WCC, and SpMV.
However, for the same queries, it fails to issue any
IO to the Optane SSD at the end of each iteration
(the period where the read bandwidth remains
zero) due to the straggler thread still processing a
large volume of messages (Figure 2 (b)).

Mitigating this problem requires balancing the
workload – the messages passed among vertices
– between threads but achieving this without syn-
chronization is not straightforward. We solve this
problem in Blaze with a synchronization-free, on-
line binning technique we describe in Section IV-A.

B. Skewed IO

Another problem that leads to low IO utiliza-
tion is skewed IO. We observe this problem in
Graphene.

Iteration

1MB
10MB

100MB
1GB

D
iff

IO
b

yt
es

rmat27

Iteration

1MB
10MB

100MB
1GB

rmat30

Iteration

1MB
10MB

100MB
1GB

uran27

Iteration

1MB
10MB

100MB
1GB

D
iff

IO
b

yt
es

twitter

Iteration

1MB
10MB

100MB
1GB

sk2005

Iteration

1MB
10MB

100MB
1GB

friendster

Fig. 3: Skewed IO in Graphene. y-axis: max−min
IO bytes between eight SSDs for each iteration.

Skewed load of IO across multiple disks is an-
other source of low IO utilization. In synchronous
graph processing where edges are distributed in
multiple disks, the maximum aggregate IO band-
width is achieved when all disks are kept busy at all
times. When IO is not balanced, however, it leaves
some disks to wait until other disks complete their
requests. We find that Graphene suffers this skewed
IO problem due to its topology-aware partitioning
scheme.

Graphene adopts 2-D partitioning of a graph
with the goal of producing partitions with the
same number of edges. Then it distributes these
partitions on multiple disks in a way that each disk
has the same number of partitions, making each
disk have an equal number of edges.

Despite having a balanced partition distribution,
Graphene suffers highly skewed IO on algorithms
that employ selective scheduling of edges. Selective
scheduling means that only a subset of the total
edges are traversed in a given iteration, a common
technique to increase algorithm efficiency by only
accessing the necessary edges for a given algorithm
goal. In Graphene, these algorithms end up ac-
cessing edges on certain disks more than those on
others, leading to skewed IO.

Figure 3 shows the skewed IO of Graphene on
BFS that employs selective scheduling over itera-
tions. On the y-axis, the figures show the maximum
difference between 8 disks in terms of the IO bytes
each disk must process in a given iteration. For
example, a bar with 10 MB of height means that
the disk with the largest amount of IO tasks has
to do 10 MB of more IO than the disk with the
smallest amount of IO, so the higher bar means IO
is more skewed. We observe that Graphene suffers
the skewed IO on all power-law graphs. On the
uran27 graph with uniform degree distribution, the
difference in IO is less than 1 MB. However, on
other graphs that follow power-law, the maximum
IO difference goes up to more than 100 MB. The
impact is more dramatic when considering the
ratio, not just the absolute bytes – A disk has to

BFS BC PR

0

1

2

3

B
a

n
d

w
id

th
(G

B
/

s)
Optane SSD

NAND SSD

rmat27

uran27

twitter

sk2005

Fig. 4: Single-threaded graph computation speed
(bars) vs. IO bandwidth (lines).

conduct up to 1.7–2.1× (depending on the input
graph except uran27) more IO than another disk.

Based on these results, we conclude that the
topology-aware graph partitioning adopted by
Graphene incurs the skewed IO problem when
running algorithms with selective scheduling. We
mitigate this problem with topology-agnostic graph
partitioning based on the page interleaving as we
describe in Section IV-E.

C. Fast IO, Slow Computation

Graphene’s low IO utilization also stems from
its thread assignment policy which leads to the
fast producer and slow consumer problem. Graphene
equally devides cores across IO and computation –
a pair of cores are assigned to each SSD, one for
IO and one for computation. For slow SSDs, this
scheme still helps maximize the IO bandwidth by
assigning a dedicated thread for each SSD.

However, two threads strictly assigned for each
SSD are not sufficient for FNDs because they cannot
saturate the bandwidth of FNDs. When the pro-
ducer (IO thread) sends IO buffers filled with on-
disk pages faster than the consumer (computation
thread) can process, the free IO buffers soon become
unavailable, which in turn blocks the IO thread
from issuing more IO requests.

We measure the impact of this problem by com-
paring the speed of various single-threaded graph
computations with the read bandwidth of various
storage devices (Figure 4). Compared to slow stor-
age like NAND SSD, single-threaded graph compu-
tation is fast enough on a set of workloads. How-
ever, it does not keep up with the speed of Optane
SSD on all workloads we measured. The result
implies that enough threads must be assigned for
computation to constantly saturate the underlying
FND in out-of-core graph processing.

IV. BLAZE FRAMEWORK

Blaze supports high-performance graph analytics
on FNDs by constantly saturating the underlying
IO bandwidth, a challenge that was not achieved
by current systems. The key to achieving this
goal is the low overhead, scatter-gather scheme

called online binning that processes user-provided
graph computations without synchronization while
achieving load balance among threads. In addition,
Blaze achieves balanced IO among multiple SSDs
by partitioning the input graph with page inter-
leaving (RAID 0) that balances IO well on a variety
of workloads. Blaze abstracts these mechanisms
in the well-known, in-core graph processing API,
EDGEMAP and VERTEXMAP [22], to enable the pro-
gramming of efficient out-of-core graph algorithms
without the need to handle complex IO executions.

A. Online Binning

An IO-efficient execution of EDGEMAP relies on
low-overhead graph computation which we enable
with the technique we call online binning. The idea
of using bin data structure in graph processing is
inspired by propagation blocking [4] but we adapt
this idea to out-of-core graph processing.

A bin is a struct kept in DRAM that holds
multiple bin records where each bin record is a
〈vertex id, value〉 pair. During execution, Blaze cre-
ates a bin record for each algorithm-specific scat-
ter function with the destination vertex id and
the value returned by the scatter function. Then
Blaze appends the record to the corresponding
bin (bin id = vertex id mod bin count). Once a
bin becomes full, Blaze pushes it to a concurrent
queue called full_bins to allow gather threads
to process the records in the full bins. Each gather
thread processes one full bin in its entirety. Most
importantly, Blaze ensures that no two gather threads
process the same bin at the same time and this avoids
the need to synchronize between gather threads.

To maximize the performance of online binning,
Blaze adopts several optimization techniques. First,
Blaze uses a small fixed size, per-CPU buffer [4]
to reduce the synchronization overhead while bin-
ning, where the buffer allocates memory space for
each bin. Blaze first appends the bin record to
this buffer, and once it becomes full, Blaze copies
the records in the buffer to the corresponding bin
in batch. Second, Blaze uses MPMC queue for
full_bins for highly concurrent push/pull of full
bins between scatter and gather threads. Third,
Blaze implements each bin as a pair of bins to
ensure the forward progress of both scatter and
gather threads. Once one of the pair becomes full,
its pointer is appended to the full_bins queue
for gather threads while the other bin serves scatter
threads. A scatter thread is blocked until a gather
thread finishes the processing of the full bin and
returns it to the empty state.

Online binning has several configuration param-
eters including bin count, bin size, and the ratio

Fig. 5: Out-of-core EDGEMAP engine in Blaze.

between scatter and gather threads. Data in Sec-
tion V-E shows that performance is robust across
a wide range of values, so precise tuning is not
required. In particular, our data show that one
thousand bins, 0.05× of the input graph size for bin
space, and an equal number of scatter and gather threads
will provide good performance in general and that
more careful tuning improves performance by, at
most, 5%.

B. Programming API

To support the programming of efficient out-
of-core graph algorithms, Blaze provides two key
APIs, EDGEMAP and VERTEXMAP. The APIs were
first introduced by Ligra [22] in-core graph process-
ing framework and have shown that they can be
used to express a broad range of efficient, paral-
lel graph algorithms [22], [21], [8] for in-memory
graph processing. We extend them to enable effi-
cient out-of-core graph processing while hiding the
binning-based execution entirely from the user.

EDGEMAP(graph : Graph,

frontier : V ertexSubset,

fs : (vertex× vertex)→ value type,

fg : (vertex× value type)→ bool,

cond : vertex→ bool,

output : bool) : V ertexSubset

Executes two edge functions, fs and fg , to
the edges whose source vertices are in the given
frontier. Users provide the scatter function fs that
returns an algorithm-specific value to scatter it to
neighboring vertices. The value is scattered to the
gather threads only when cond returns true with
the destination vertex ID as argument. Users also
provide the gather function fg that accumulates
the scattered values to the algorithm-specific data
array. When the output is true, EDGEMAP creates an
output frontier and pushes the destination vertex
ID to the frontier if fg returns true.

The scatter and gather functions communicate
intermediate data via bin data structure provided

by the online binning mechanism. This ensures
that scatter and gather steps are executed without
synchronization overhead while achieving load bal-
ance among worker threads.

VERTEXMAP(frontier : V ertexSubset,

f : vertex→ bool) : V ertexSubset

Applies a vertex function f to each vertex in
the frontier. It conditionally filters out the vertices
from the frontier when f returns true, and re-
turns a new frontier. In Blaze, VERTEXMAP executes
entirely in memory as all vertex-related data is
placed in memory. In most algorithms, VERTEXMAP
is used along with EDGEMAP alternatively in an
iteration to update vertex values and reduce the
next frontier size. In Section IV-D, we describe
how BFS, PageRank, and WCC algorithms use both
EDGEMAP and VERTEXMAP functions together in
more detail.

C. Out-of-core EDGEMAP Execution

Figure 5 shows the architecture of Blaze’s
EDGEMAP engine and how an EDGEMAP function
is executed in an out-of-core fashion along with
online binning.

With the frontier as input, an EDGEMAP function
starts execution by first transforming the given
frontier into the pagefrontier, a data structure that
contains the disk page IDs that contains the target
vertex IDs in the frontier (step 1). Blaze uses all
available threads to accelerate this transformation
before starting issuing IO requests. Once the page
frontier is ready, IO threads start fetching the page
IDs from it and send IO requests to the underlying
SSDs (step 2) with the free IO buffers (step 3). Blaze
uses one thread for each SSD and maintains the
page frontier for each SSD. Once the corresponding
disk pages are fetched into the buffers (step 4),
online binning comes into play – the scatter threads
get these fill buffers (step 5), append the records
to the corresponding bins (step 6), and return the
IO buffers back to the free IO buffer pool (step 7).
Concurrently, the gather threads fetch the full bins

(step 8) and apply the records in the bins into the
algorithm-specific, vertex data (step 9). Finally, the
gather threads returns a new frontier if required by
the caller of EDGEMAP.

To support the fast communication of IO buffers
between IO threads and computation threads
(scatter, gather threads), Blaze uses a concurrent
MPMC (multi-producer, multi-consumer) queue.
Blaze maintains two queues, one for free IO buffers,
and the other for filled IO buffers, each of which
contains the address of the buffer page.

Blaze uses two types of frontier, V ertexSubset
and PageSubset for the vertex frontier and page
frontier, respectively. Both types abstract the sparse
and dense format and switch between them inter-
nally depending on the density of the members.
Both types use concurrent set data structure when
the members are sparse and use bitmap when
the members are dense, similarly in Ligra [22].
PageSubset is only used internally for IO and not
exposed to the users.

For IO execution, Blaze issues IO requests based
on the page IDs contained in the page frontier. For
continuous pages, Blaze issues only small contigu-
ous IO unlike FlashGraph [27] and Graphene [16].
Concretely, Blaze merges up to four contiguous
4 kB pages as larger IO request is not beneficial on
FND. Rather, it is studied in Graphene [16] that the
large IO significantly increases the Asynchronous
IO submission time. Also, Blaze does not attempt
to merge non-consecutive pages even if they are
within a certain threshold [16] – On FNDs, 4 kB
random IO is already fast enough such that there
is little incentive to issue large IO requests at the
cost of accessing non-target pages.

D. Examples

BFS Algorithm 1 shows a parallel out-of-core BFS
algorithm written in Blaze’s API. The user pro-
vides two edge functions, SCATTER and GATHER.
Leveraging the online binning internally, they co-
operatively update the Parent array without syn-
chronization overhead. Specifically, SCATTER func-
tion examines input edges and returns the source
vertex ID. To reduce unnecessary propagation of
values, the user also provides COND function –
SCATTER is executed only when the destination
vertex has not been visited yet by checking if COND
returns true. Then GATHER function receives the
value (v) along with the associated destination ID
(d). If the destination vertex has not been visited
(Parent[d] == −1), GATHER updates the parent
array with the source vertex ID and returns 1,
activating the current destination vertex in the next
iteration. Finally, these functions are used in the

Algorithm 1 Breadth-First Search
1: Parent = {−1, ...,−1} . initialize all to -1’s
2:
3: procedure SCATTER(s, d) . scatter function
4: return s
5: end procedure
6:
7: procedure GATHER(d, v) . gather function
8: if Parent[d] == −1 then
9: Parent[d] = v

10: return 1
11: end if
12: return 0
13: end procedure
14:
15: procedure COND(d) . conditional function
16: return Parent[d] == −1
17: end procedure
18:
19: procedure BFS(G, s) . s is the root
20: Parent[s] = s
21: F = {s}
22: while ¬F.empty() do
23: F = EDGEMAP(G,F, SCATTER, GATHER, COND, true)
24: end while
25: end procedure

main BFS function as arguments to the EDGEMAP
that iteratively runs until the frontier F becomes
empty.

PageRank Algorithm 2 shows an example of
PageRank that implements PageRank-delta algo-
rithm [22], [17], a variant of PageRank in which
vertices are active in an iteration only if they have
accumulated enough change in their page rank
values. In our implementation, EDGEMAP propa-
gates the delta value of each vertex, normalized
with its out-degree, to the out-going neighbors in
SCATTER and accumulates those values in GATHER
without synchronization. Then VERTEXMAP applies
the accumulated delta values kept in ngh sum to
the delta array and filters out vertices whose change
in the page rank value in p is less than a given
threshold e, as implemented in APPLYFILTER. The
EDGEMAP and VERTEXMAP alternately run until no
vertex is active in the frontier.

WCC Algorithm 3 shows the shortcutting label
propagation algorithm running on an undirected
graph [23] implemented in Blaze API. While SCAT-
TER and GATHER updates the destination vertex
value with the smaller vertex ID (normally as in
original label propagation), the shortcutting mech-
anism in APPLYFILTER conducts pointer jumping
to accelerate the label propagation. In addition, it
activates only the vertices that suffered the value
change from the previous iteration. With Blaze API,
our WCC implementation executes EDGEMAP for
both CSR (outG) and a transpose of it (inG) to prop-
agate vertex values on an undirected graph. The
algorithm finishes when no further propagation is

Algorithm 2 PageRank
1: G← Input graph
2: p = {0, ..., 0}
3: ngh sum = {0, ..., 0}
4: delta = { 1

V
, ..., 1

V
}

5: D ← 0.85, e← threshold
6:
7: procedure SCATTER(s, d) . scatter function
8: return delta[s]/G.get degree(s)
9: end procedure

10:
11: procedure GATHER(d, v) . gather function
12: ngh sum[d]+ = v
13: return 1
14: end procedure
15:
16: procedure COND(d) . conditional function
17: return 1
18: end procedure
19:
20: procedure APPLYFILTER(i) . vertex function
21: delta[i] = ngh sum[i] ∗D
22: ngh sum[i] = 0
23: if |delta[i]| > e ∗ p[i] then
24: p[i]+ = delta[i]
25: return 1
26: else
27: return 0
28: end if
29: end procedure
30:
31: procedure PAGERANK(G)
32: F = {1, ..., 1} . activate all vertices
33: while ¬F.empty() do
34: EDGEMAP(G,F, SCATTER, GATHER, COND, false)
35: F = VERTEXMAP(F, APPLYFILTER)
36: end while
37: end procedure

required.

E. Balanced IO

In addition to the low-overhead, balanced com-
putation powered by online binning, Blaze also
achieves balanced IO with page-interleaved, Com-
pressed Sparse Row (CSR) format – Blaze stripes a
CSR graph into multiple SSDs in 4 kB granularity.
Page interleaving (RAID 0) is a well-known tech-
nique used in various HPC domains to maximize
the aggregate bandwidth of underlying devices. We
find that it is also effective in out-of-core graph
analytics. We reject other topology-aware parti-
tioning schemes such as 2-D partitioning used in
Graphene [16] as they incur imbalanced load across
multiple disks when only a subset of edges need to
be accessed in each iteration.

F. Memory Usage

Blaze requires the memory space as follows ex-
cept the algorithm-specific data.
System-level Regardless of any given workload,
Blaze requires a static memory space to allocate
IO buffers from. In Blaze, large memory space is
not required for IO buffers as scatter threads return

Algorithm 3 WCC
1: Ids = {0, ..., V − 1} . initialize all to node ids
2: PrevIds = {0, ..., V − 1} . initialize all to node ids
3:
4: procedure SCATTER(s, d) . scatter function
5: return Ids[s]
6: end procedure
7:
8: procedure GATHER(d, v) . gather function
9: orig id = Ids[d]

10: if v < orig id then
11: Ids[d] = v
12: end if
13: return 1
14: end procedure
15:
16: procedure COND(d) . conditional function
17: return 1
18: end procedure
19:
20: procedure APPLYFILTER(i) . vertex function
21: id = Ids[Ids[i]]
22: if Ids[i]! = id then
23: Ids[i] = id
24: end if
25: if PrevIds[i]! = Ids[i] then
26: PrevIds[i] = Ids[i]
27: return 1
28: else
29: return 0
30: end if
31: end procedure
32:
33: procedure WCC(outG, inG)
34: F = {1, ..., 1} . activate all vertices
35: while ¬F.empty() do
36: EDGEMAP(outG, F, SCATTER, GATHER, COND, false)
37: EDGEMAP(inG, F, SCATTER, GATHER, COND, false)
38: F = VERTEXMAP(F, APPLYFILTER)
39: end while
40: end procedure

the IO buffers quickly enough for IO threads to re-
use those buffers. Accordingly, we set the memory
space relatively small (64 MB in all workloads)
compared to the input graph size we tested.

In addition, Blaze requires a memory space to
maintain bins for online binning. We experimen-
tally decide the proper bin size based on our study
in Section V-E.

Graph metadata For a given input graph, Blaze
maintains an index array and a key-value map
in memory for efficient graph access. To keep the
graph index array compact, Blaze uses indirection
as in Figure 6 – Blaze groups sixteen 4 bytes-sized
degrees into a single cache-line in the degrees region
and only keeps the location of the cache-lines in
the offsets region. With indirection, the offset is
retrieved by first looking up the offsets region with
vertex id / 16 as key then adding degrees up to
vertex id % 16 in the corresponding cache-line in
degrees region. This indirection-based index array
in Blaze requires about 4 bytes× |V | of memory.

In addition to the index, Blaze keeps an addi-

Fig. 6: Indirection-based graph index in Blaze.

tional map page-to-vertex map to accelerate access
to vertex data given a page number. The map re-
turns a 〈begin vertex id, end vertex id〉 pair given
an on-disk page number as key. The size of this
structure is small as it only requires 8 bytes for each
disk page.

V. EVALUATION

We evaluate Blaze with a variety of work-
loads, comparing it against two state-of-the-art,
open-sourced out-of-core graph processing sys-
tems, FlashGraph [27] and Graphene [16]. In ad-
dition, we study how Blaze scales with more hard-
ware resources, and how it performs with different
binning configurations.

A. Experimental Setting

Target queries We use the following graph algo-
rithms to evaluate Blaze.
• Breadth-First Search (BFS)
• PageRank (PR) using the delta variant algo-

rithm [17].
• Weakly Connected Components (WCC) using

Label propagation [28].
• Sparse Matrix-Vector Multiplication (SpMV)
• Betweenness Centrality (BC) using Brandes’s

algorithm [7].
We implement these queries based on the imple-

mentations in Ligra [22] as both systems share the
same API. The difference is that Blaze algorithms
require the scatter and gather functions as input to
the EDGEMAP function while Ligra requires pro-
viding only a single, synchronization-based edge
function to the EDGEMAP. Also, Ligra’s EDGEMAP
is executed purely in memory while Blaze newly
introduces the execution of EDGEMAP in an out-of-
core fashion.
System configuration Our testbed is a single
socket, Intel Xeon Gold 6230 processor (2.1 GHz)
with 20 physical cores (no hyperthreading). The
machine is equipped with 96 GB of DRAM; one
1.9 TB Intel NAND SSD (DC S3520) and one 960 GB
Intel Optane SSD (DC P4800X).

B. Comparison with Other Systems

We compare the performance of Blaze with Flash-
Graph and Graphene on six input graphs stored
on an Intel Optane SSD. Among the five target
queries – BFS, PR, WCC, SpMV, and BC, we could

BFS
PR

W
CC

SpM
V BC

r2

r3

ur

tw

sk

fr

1.24 7.74 3.92 1.85 2.18

1.29 13.59 6.22 2.69 2.91

1.23 1.64 7.24 2.42 1.42

1.17 1.44 3.06 1.28 1.11

0.81 0.88 3.52 0.85 0.81

1.41 0.92 7.88 1.61 1.49

vs. FlashGraph

BFS
PR

W
CC

SpM
V

r2

r3

ur

tw

sk

fr

3.28 2.58 2.39 3.27

3.57 1.64 2.35 1.63

3.54 1.97 2.16 2.56

4.05 2.09 5.25 1.62

3.21 2.73 5.17 4.45

4.41 2.22 7.95 2.19

vs. Graphene

Fig. 7: Speedups over FlashGraph and Graphene.

r2 r3 u
r

tw sk fr h
y

0

1

2

3

B
a

n
d

w
id

th
(G

B
/

s) BFS

r2 r3 u
r

tw sk fr h
y

PR

r2 r3 u
r

tw sk fr h
y

WCC

r2 r3 u
r

tw sk fr h
y

SpMV

r2 r3 u
r

tw sk fr h
y

O
O

M

BC

(a) Blaze
r2 r3 u

r
tw sk fr h

y

0

1

2

3

B
a

n
d

w
id

th
(G

B
/

s) BFS

r2 r3 u
r

tw sk fr h
y

PR

r2 r3 u
r

tw sk fr h
y

WCC

r2 r3 u
r

tw sk fr h
y

SpMV

r2 r3 u
r

tw sk fr h
y

O
O

M

BC

(b) Synchronization-based variant

Fig. 8: Average read bandwidth on Optane SSD

not compare the result of BC with Graphene since
Graphene does not implement BC. For all experi-
ments, we used 16 threads from a single socket for
fair comparison.

Figure 7 shows the speedup of Blaze over
FlashGraph (left) and Graphene (right). Except on
sk2005, Blaze generally outperforms FlashGraph,
achieving up to 13.6× speedup when running
PageRank on rmat30 graph. On sk2005, Blaze per-
forms 12–20% slower than FlashGraph because the
sk2005 graph has a high locality [5] such that stor-
age access is minimized by hitting the page cache
implemented in FlashGraph with LRU policy. Blaze
only implements the random eviction of IO buffer
pages, and we leave implementing more advanced
eviction policies as future work.

On the other hand, Blaze consistently outper-
forms Graphene with 1.6–7.9× of speedups on our
target workloads. In case of PR, we compare the
execution time of 1 PR iteration as Graphene does
not implement PR with selective scheduling.

2 4 8 16

2
4
8

16
32
64

128

P
ro

ce
ss

in
g

ti
m

e
(s

ec
) rmat27

BFS PageRank WCC SpMV BC

2 4 8 16

16
32
64

128
256
512

1024

rmat30

2 4 8 16

2
4
8

16
32
64

128

uran27

2 4 8 16

Threads

2
4
8

16
32
64

128

P
ro

ce
ss

in
g

ti
m

e
(s

ec
) twitter

2 4 8 16

Threads

2
4
8

16
32
64

128

sk2005

2 4 8 16

Threads

2
4
8

16
32
64

128

frienster

Fig. 9: Thread scaling

C. IO Utilization

Blaze achieves high IO bandwidth close to the
FND’s device bandwidth. In Figure 8, we report
the average IO bandwidth of our target workloads
measured on Optane SSD. We calculate the average
bandwidth as the total read IO bytes divided by
the total query execution time. To see the impact of
online binning on IO utilization, we compare Blaze
with a synchronization-based variant of Blaze that
uses atomic operations like compare-and-swap to
synchronize parallel updates.

Unlike FlashGraph and Graphene which under-
utilize an Optane SSD’s bandwidth as reported in
Figure 1, Blaze almost fully utilizes the bandwidth
on all our workloads. On computation-heavy work-
loads like PageRank and SpMV, the high IO band-
width is only achieved with online binning. Oth-
erwise, the synchronization-based Blaze achieves
only 38–85% of the Optane’s device bandwidth on
both queries depending on the workload.

D. Scalability

Blaze scales with increasing core count as long
as the underlying storage is not saturated. Figure 9
(with both axes in log scale) shows how Blaze’s per-
formance scales when running our workloads on
a single Optane SSD. Performance almost linearly
scales with more cores on most of the workloads.
On a certain set of workloads (e.g., BFS on sk2005),
using one scatter and one gather thread (therefore
two cores) is sufficient to saturate the IO bandwidth
as the graph has high locality and thus causes less
CPU overhead with processor cache hits. In these
cases, Blaze does not scale with more threads as the
IO bandwidth becomes the bottleneck.

1
6

3
2

6
4

1
2

8
2

5
6

5
1

2
1

0
2

4

0

1

2

3

R
ea

d
B

W
(G

B
/

s)

rmat27

1
6

3
2

6
4

1
2

8
2

5
6

5
1

2
1

0
2

4

0

1

2

3

rmat30

1
6

3
2

6
4

1
2

8
2

5
6

5
1

2
1

0
2

4

0

1

2

3

uran27

1
6

3
2

6
4

1
2

8
2

5
6

5
1

2
1

0
2

4

Bin size (MB)

0

1

2

3

R
ea

d
B

W
(G

B
/

s)

twitter

1
6

3
2

6
4

1
2

8
2

5
6

5
1

2
1

0
2

4

Bin size (MB)

0

1

2

3

sk2005

1
6

3
2

6
4

1
2

8
2

5
6

5
1

2
1

0
2

4

Bin size (MB)

0

1

2

3

frienster

Fig. 10: Impact of binning space.

4

1
6

6
4

2
5

6

1
k

4
k

1
6

k

6
4

k

Bin count

0

20

40

60

P
ro

ce
ss

in
g

ti
m

e
(s

ec
)

rmat27, 16 threads

BFS

PageRank

WCC

SpMV

BC

1
:1

5

3
:1

3

5
:1

1

7
:9

9
:7

1
1

:5

1
3

:3

1
5

:1

Threads (scatter:gather)

0

20

40

60

rmat27, 16 threads

Fig. 11: Impact of binning configurations.

E. Impact of Online Binning Configurations

Online binning in Blaze requires users to set up
a few parameters to perform as expected.
Bin size The total bin size must be set large
enough not to slow down the performance of Blaze.
To understand the right bin size, we measured the
average read bandwidth of SpMV query on all
input graphs while varying the total bin size from
16 MB to 1 GB. Based on the result in Figure 10,
we find that a good heuristic value for the bin size
is roughly 1

20 |E| × 4 bytes for each graph but using
smaller values is also viable on some graphs.
Bin count We also study how different bin counts
can impact the performance of online binning. For
this, we measure the processing time of all queries
on rmat27 graph with 256 MB of bin space while
doubling the bin count from 4 to 131072. Figure 11
shows that the processing time is relatively stable
for a large range of bin counts but increases signif-
icantly when the value is too large or too small.
Scatter, gather thread ratio An intuition in choos-
ing the right ratio between the number of scatter
and gather threads is to consider the relative com-
putation load between scatter and gather in each
algorithm. If the load is similar, a good choice is
to use an equal number of threads for both tasks.

r2 r3 ur tw sk fr hy

0
25
50
75

100
M

em
or

y
us

ag
e

(%
) BFS

r2 r3 ur tw sk fr hy

PR

r2 r3 ur tw sk fr hy

WCC

r2 r3 ur tw sk fr hy

SpMV

r2 r3 ur tw sk fr hy
OO

M

BC

Fig. 12: Memory footprint relative to the input
graph size.

The result in Figure 11 reflects this intuition –
The execution time remains constantly low when a
similar amount of threads are used for scatter and
gather but sharply increases as more threads are
assigned for one task than the other.

F. Memory Usage

Under the semi-external model, Blaze aims to
minimize the memory consumption while support-
ing high-performance out-of-core graph processing
on FNDs. Figure 12 shows the memory consump-
tion of Blaze on our target workloads. The figure
depicts the ratio of memory footprint to input
graph size in each workload.

Depending on the workload, Blaze’s memory
footprint is 10–34% of the input graph size. Con-
cretely, memory footprint is affected by the input
query and the underlying graph. For BFS that
requires only a single integer array to keep the
parent relationships (Algorithm 1), the ratio is 10–
20% throughout different input graphs.

However, certain queries require more memory
due to the nature of their algorithms. For instance,
in case of our PageRank implementation, the ra-
tio goes up to 16–33% as PageRank-delta requires
three floating point arrays to implement (Algo-
rithm 2). In addition, we were not able to run BC
on hyperlink2014 graph because Brandes’s algo-
rithm [7] requires more than 96 GB of memory to
run on 512 GB of undirected hyperlink2014 graph.
We expect mitigating these problems require more
memory-efficient algorithms.

Except for BC, Blaze can successfully run other
queries on hyperlink2014 with the limited amount
of memory compared to the graph size while exist-
ing in-core frameworks [22], [19], [26] will run into
the out-of-memory issue with this dataset.

VI. RELATED WORK

The design of graph processing systems has been
evolved mainly in three different ways depending
on the use of secondary storage and the use of
memories in multiple machines.
In-core graph processing processes graphs en-
tirely in the main memory of a single machine.
Galois [19] is a lightweight runtime that offers
API for implementing efficient task scheduling of

various graph algorithms. GAP [6] offers a bench-
mark suite of various in-core graph algorithms
to standardize the in-core graph processing eval-
uations. GraphIt [26] introduces a new domain-
specific language and runtime to help separate
the process of algorithm writing and performance
optimization. Finally, Ligra [22] is an in-core graph
processing framework that offers simple APIs for
writing graph algorithms and optimizes the execu-
tion of those algorithms by automatically switching
between push and pull-based operations based on a
user-provided threshold. Blaze extends the Ligra’s
APIs but adapts them to support efficient out-of-
core execution.

Out-of-core graph processing uses storage de-
vices to hold the large graphs that do not fit in a
single machine’s memory and process those graphs
by judiciously moving pages between the storage
and the memory. To minimize the overhead of
expensive IO, the design of out-of-core systems has
evolved in step with the performance characteris-
tics of underlying storage devices. GraphChi [15]
was the first out-of-core graph processing system
designed for sequential disks. XStream [20] ex-
plored a new tradeoff that fully exploits the benefit
of sequential access at the cost of more IO. More
out-of-core systems have been further developed to
leverage the sequentiality of disks [29], [12], [24].

On the other hand, systems like FlashGraph [27]
and Graphene [16] explored the ways to utilize
fast random IO that early-generation SSDs of-
fer, achieving significant performance improvement
over prior systems as less IO is required. Blaze
makes a similar design choice but further optimizes
software mechanisms to constantly saturate the
high IO bandwidth of modern FNDs. A more recent
work by Elyasi et al. [9] explored a new graph
partitioning technique to leverage the fast random
IO of FNDs in the fully-external processing style.
However, this work makes a different tradeoff from
Blaze – it places only a subset of vertex data in
memory to achieve smaller memory footprint but
potentially at the cost of performance. Unfortu-
nately, we could not compare this work with Blaze
as it is not public.

Distributed graph processing is another way
to process large graphs by holding them in the
memories of multiple machines and processing
them via network communications. Systems like
PowerGraph [10], Pegasus [13], and GraphLab [17]
have been developed to ease the programming of
distributed graph algorithms while offering high
performance on highly-skewed graphs. Nonethe-
less, distributed graph processing systems often

lack efficiency with low per-CPU performance [18]
and do not necessarily outperform out-of-core sys-
tems despite using more resources from a cluster
of machines [15], [29], [27], [16].

For higher scalability in terms of both CPU and
storage, Blaze could be further scaled out on mul-
tiple machines where each machine is equipped
with one or more FNDs. One potential way to scale
out Blaze is to partition the input graph based
on the destination vertex and place each partition
in each machine. This allows a single machine
to process only a subset of edges and vertex-
related values, and, more importantly, to propagate
values between scatter and gather threads locally,
avoiding the costly network communications dur-
ing EDGEMAP execution. We leave scaling out Blaze
in this manner as future work.

VII. CONCLUSION

We present Blaze, a new out-of-core graph pro-
cessing system optimized for FNDs. Blaze offers
high-performance graph analytics by constantly
saturating FNDs with a novel scatter-gather tech-
nique called online binning while previous tech-
niques like synchronization or message passing fail
to achieve this goal. Blaze offers succinct APIs for
writing efficient, out-of-core graph algorithms with-
out the burden to deal with complex IO executions.

ACKNOWLEDGMENTS

This work was supported in part by CRISP, one
of six centers in JUMP, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA.
We thank the anonymous reviewers for their valu-
able feedback.

REFERENCES

[1] Intel optane ssd 9 series. https://www.intel.com/content/
www/us/en/products/details/memory-storage/
consumer-ssds/optane-ssd-9-series.html.

[2] Samsung v-nand ssd. https://www.samsung.com/us/
business/computing/memory-storage/solid-state-drives/
explore/.

[3] Samsung z-ssd. https://semiconductor.samsung.com/
ssd/z-ssd/.

[4] S. Beamer, K. Asanović, and D. Patterson. Reducing pager-
ank communication via propagation blocking. In 2017 IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), pages 820–831, 2017.

[5] Scott Beamer, Krste Asanovic, and David Patterson. Local-
ity exists in graph processing: Workload characterization
on an ivy bridge server. In Proceedings of the 2015 IEEE
International Symposium on Workload Characterization, IISWC
’15, page 56–65, USA, 2015. IEEE Computer Society.

[6] Scott Beamer, Krste Asanovic, and David A. Patterson. The
GAP benchmark suite. CoRR, abs/1508.03619, 2015.

[7] Ulrik Brandes. A faster algorithm for betweenness cen-
trality. The Journal of Mathematical Sociology, 25(2):163–177,
2001.

[8] Laxman Dhulipala, Charles McGuffey, Hongbo Kang, Yan
Gu, Guy E. Blelloch, Phillip B. Gibbons, and Julian
Shun. Sage: Parallel semi-asymmetric graph algorithms for
nvrams. Proc. VLDB Endow., 13(9):1598–1613, May 2020.

[9] Nima Elyasi, Changho Choi, and Anand Sivasubramaniam.
Large-scale graph processing on emerging storage devices.
In Proceedings of the 17th USENIX Conference on File and
Storage Technologies, FAST’19, page 309–316, USA, 2019.
USENIX Association.

[10] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bick-
son, and Carlos Guestrin. Powergraph: Distributed graph-
parallel computation on natural graphs. In Proceedings of
the 10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, page 17–30, USA, 2012. USENIX
Association.

[11] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-
Hoon Lee, Min-Soo Kim, Jinha Kim, and Hwanjo Yu.
Turbograph: A fast parallel graph engine handling billion-
scale graphs in a single pc. In Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’13, page 77–85, New York, NY, USA,
2013. Association for Computing Machinery.

[12] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu,
and Arvind. Grafboost: Using accelerated flash storage for
external graph analytics. In Proceedings of the 45th Annual
International Symposium on Computer Architecture, ISCA ’18,
page 411–424. IEEE Press, 2018.

[13] U Kang, Charalampos E. Tsourakakis, and Christos Falout-
sos. Pegasus: A peta-scale graph mining system imple-
mentation and observations. 2009 Ninth IEEE International
Conference on Data Mining, pages 229–238, 2009.

[14] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas.
Reaping the performance of fast nvm storage with udepot.
In Proceedings of the 17th USENIX Conference on File and Stor-
age Technologies, FAST’19, page 1–15, USA, 2019. USENIX
Association.

[15] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi:
Large-scale graph computation on just a pc. In Proceed-
ings of the 10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, page 31–46, USA, 2012.
USENIX Association.

[16] Hang Liu and H. Howie Huang. Graphene: Fine-grained
IO management for graph computing. In 15th USENIX
Conference on File and Storage Technologies (FAST 17), pages
285–300, Santa Clara, CA, February 2017. USENIX Associ-
ation.

[17] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos
Guestrin, Aapo Kyrola, and Joseph M. Hellerstein. Dis-
tributed graphlab: A framework for machine learning and
data mining in the cloud. Proc. VLDB Endow., 5(8):716–727,
April 2012.

[18] Frank McSherry, Michael Isard, and Derek G. Murray. Scal-
ability! but at what cost? In Proceedings of the 15th USENIX
Conference on Hot Topics in Operating Systems, HOTOS’15,
page 14, USA, 2015. USENIX Association.

[19] Donald Nguyen, Andrew Lenharth, and Keshav Pingali.
A lightweight infrastructure for graph analytics. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, page 456–471, New York, NY,
USA, 2013. Association for Computing Machinery.

[20] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-
stream: Edge-centric graph processing using streaming par-
titions. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP ’13, page 472–488,
New York, NY, USA, 2013. Association for Computing
Machinery.

[21] Julian Shun. An Evaluation of Parallel Eccentricity Estimation
Algorithms on Undirected Real-World Graphs, page 1095–1104.
Association for Computing Machinery, New York, NY,
USA, 2015.

[22] Julian Shun and Guy E. Blelloch. Ligra: A lightweight
graph processing framework for shared memory. In Pro-

https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.samsung.com/us/business/computing/memory-storage/solid-state-drives/explore/
https://www.samsung.com/us/business/computing/memory-storage/solid-state-drives/explore/
https://www.samsung.com/us/business/computing/memory-storage/solid-state-drives/explore/
https://semiconductor.samsung.com/ssd/z-ssd/
https://semiconductor.samsung.com/ssd/z-ssd/

ceedings of the 18th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’13, page
135–146, New York, NY, USA, 2013. Association for Com-
puting Machinery.

[23] Stergios Stergiou, Dipen Rughwani, and Kostas Tsiout-
siouliklis. Shortcutting label propagation for distributed
connected components. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining,
WSDM ’18, page 540–546, New York, NY, USA, 2018.
Association for Computing Machinery.

[24] Keval Vora. LUMOS: Dependency-driven disk-based graph
processing. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 429–442, Renton, WA, July 2019.
USENIX Association.

[25] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Imple-
mentation, NSDI’12, page 2, USA, 2012. USENIX Associa-
tion.

[26] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib
Kamil, Julian Shun, and Saman Amarasinghe. Graphit: A
high-performance graph dsl. Proc. ACM Program. Lang.,
2(OOPSLA), October 2018.

[27] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogel-
stein, Carey E. Priebe, and Alexander S. Szalay. Flashgraph:
Processing billion-node graphs on an array of commodity
ssds. In 13th USENIX Conference on File and Storage Tech-
nologies (FAST 15), pages 45–58, Santa Clara, CA, February
2015. USENIX Association.

[28] Xiaojin Zhu and Zoubin Ghahramani. Learning from la-
beled and unlabeled data with label propagation. Technical
report, 2002.

[29] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Grid-
graph: Large-scale graph processing on a single machine
using 2-level hierarchical partitioning. In 2015 USENIX
Annual Technical Conference (USENIX ATC 15), pages 375–
386, Santa Clara, CA, July 2015. USENIX Association.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
1 SYSTEM REQUIREMENT
1.1 Hardware dependencies
We evaluated Blaze with the following machine configuration.

• CPU : Intel Xeon Gold 6230 processor (2.1 GHz) with 20
physical cores in a single socket (no hyperthreading)

• Memory : 96GB of DRAM
• Storage : 1.9TB Intel NAND SSD (model: DC S3520), 960GB
Intel Optane SSD (model: DC P4800X)

• OS: Linux 5.12
Blaze is not yet optimized for multi-socket processors so we

recommend to use single-socket machine or similar setting to re-
produce similar results in the paper.

Also, while Blaze runs on any type of block device, its high
performance is best judged when running on fast NVMe SSDs such
as Intel Optane SSD. If desired, we will provide proper guidelines
to allow access to our testbed.

1.2 Software dependencies
We provide a docker image containing pre-built binaries so it is not
necessary to explicitly build the dependencies to run Blaze. As for
the docker version, we used the version 20.10.10, so we expect the
same or a newer version to work.

1.3 Data sets
We evaluated Blaze’s performance on six input graphs – rmat27,
rmat30, uran27, twitter, sk2005, and friendster.

To download each dataset,
$ wget https://storage.googleapis.com/nvsl-

aepdata/graphdata/sc22/{dataset_name}.zip
The size of each zip file is as follows.
• rmat27: 13GB
• rmat30: 102GB
• uran27: 16GB
• twitter: 8.5GB
• sk2005: 2.3GB
• friendster: 13GB

After unzipping, each dataset consists of four files: Two of them
are .gr.index (index file) and .gr.adj.0 (adjacency list file), collectively
representing a CSR format that stores outgoing neighbors of each
vertex. Additional two files, .tgr.index and .tgr.adj.0, represent a
transpose of the given CSR graph.

2 INSTALLATION
2.1 Storage setup
The target storage should be mounted in the target machine to
place the input graphs. An example of mounting our target disk
/dev/nvme0n1 to /mnt/nvme using Ext4 file system is as follows.

$ sudo mkfs.ext4 -F /dev/nvme0n1
$ mkdir -p /mnt/nvme

$ sudo mount /dev/nvme0n1 /mnt/nvme
Then, place the downloaded input graphs under /mnt/nvme.

2.2 Getting inside the docker container
As Blaze binaries are available in the provided docker image, it is
necessary to run and get into the container as follows.

$ docker run –rm -it -v "/path/to/your/storage":"/mnt/nvme"
junokim8/blaze:1.0 /bin/bash

Inside the docker container console, the Blaze binaries are avail-
able at /home/blaze/build.

3 EVALUATIONWORKFLOW
3.1 Major claims
The major claims and key results made in Blaze paper are listed as
follows.

(1) Blaze outperforms FlashGraph and Graphene with signifi-
cant speedups [Figure 7].

(2) Blaze’s online binning mechanism is the key to saturating
Intel Optane SSD [Figure 8].

(3) Blaze scales well with more threads as long as IO is not
saturated [Figure 9].

3.2 Reproducing results
To reproduce the above figures, we provide an automated bench-
mark script that generates CSV file for each figure. They are avail-
able under "/home/blaze/scripts" within the container.

To reproduce results of each figure, do the following.
$./run_figure7.sh (30 minutes)
$./run_figure8.sh (1 hour)
$./run_figure9.sh (3 hours)
This will generate csv file(s) corresponding to each figure.

3.3 Running each workload explicitly
For instance, run the following command to run BFS on rmat27
graph. This example calculates BFS using 17 threads (16 for compu-
tation and 1 for IO) starting from vertex 0.

$./bin/bfs -computeWorkers 16 -startNode 0
/mnt/nvme/rmat27.gr.index /mnt/nvme/rmat27.gr.adj.0

Certain queries require a transpose of the input graph as well.
For instance, our Betweenness Centrality implementation falls into
this case. To give the transpose graph as additional input, use "-
inIndexFilename" and "-inAdjFilenames" as follows.

$./bin/bc -computeWorkers 16 -startNode 0
/mnt/nvme/rmat27.gr.index /mnt/nvme/rmat27.gr.adj.0 -
inIndexFilename /mnt/nvme/rmat27.tgr.index -inAdjFilenames
/mnt/nvme/rmat27.tgr.adj.0

The number of IO thread is automatically determined by Blaze
depending on the number of given partitions. In the above examples,
we use one partition.

Kim, et al.

3.4 Configuring binning
Each graph query binary provides options to customize binning con-
figuration such as "-binSpace", "-binningRatio", and "-binCount". In
our steps for generating figure7, 8, and 9, we used "-binSpace=256",
"-binningRatio=0.5", and "-binCount=1024".

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: junokim8/blaze:1.0
Artifact name: docker image for evaluating Blaze

Artifact 2
Persistent ID: 10.5281/zenodo.6976001
Artifact name: DOI

Artifact 3
Persistent ID: https://github.com/NVSL/blaze
Artifact name: Github URL

Reproduction of the artifact with container: Download the docker
image as follows:

$ docker pull junokim8/blaze:1.0
Then run the container as follows:
$ docker run –rm -it -v "/path/to/your/storage":"/mnt/nvme"

junokim8/blaze:1.0 /bin/bash
The instructions for reproducing results of the paper are de-

scribed in the above section.

	Introduction
	Background and Motivation
	Out-of-core Graph Processing
	Evolution of Storage Performance
	Target Datasets
	Issues with Current Out-of-core Systems

	Reasons of Low IO Utilization in Current Systems
	Skewed Computation
	Skewed IO
	Fast IO, Slow Computation

	Blaze Framework
	Online Binning
	Programming API
	Out-of-core edgeMap Execution
	Examples
	Balanced IO
	Memory Usage

	Evaluation
	Experimental Setting
	Comparison with Other Systems
	IO Utilization
	Scalability
	Impact of Online Binning Configurations
	Memory Usage

	Related Work
	Conclusion
	References
	1 System requirement
	1.1 Hardware dependencies
	1.2 Software dependencies
	1.3 Data sets

	2 Installation
	2.1 Storage setup
	2.2 Getting inside the docker container

	3 Evaluation workflow
	3.1 Major claims
	3.2 Reproducing results
	3.3 Running each workload explicitly
	3.4 Configuring binning

